Overview
Evaluation
of the brachial plexus is a clinical challenge. Physical examination
has traditionally been a mainstay in evaluating and localizing pathology
involving the brachial plexus. Physical examination is especially
difficult in patients with scarring and fibrosis secondary to surgery or
irradiation. Electrophysiologic studies can be used to detect
abnormalities in nerve conduction, but they are poor for localizing a
lesion.[1, 2] (See the diagram below.)
Diagram of the brachial plexus. Injury to the brachial plexus is associated with weakness and paresthesias of the upper extremity on the affected side. Thorough neurologic examination can be performed to localize the injury and to help the radiologist pinpoint the location of pathology.
As the technology and resolution have improved, magnetic resonance imaging (MRI) has become increasingly important in the evaluation of brachial plexus pathology. Correlation of imaging results with electrophysiologic findings increases overall specificity and sensitivity.[3, 4, 5]
According to Nardin et al,[2, 6] electromyelography (EMG) and MRI examinations are complementary. Their study demonstrated that the sensitivity of EMG and MRI were 72% and 60%, respectively. Plain radiography can depict large lesions affecting the brachial plexus. However, radiographs are far less sensitive than other studies. Computed tomography (CT) scanning has increased sensitivity for depicting extrinsic masses that compress the nerves; however, it offers poor soft tissue contrast for direct evaluation of the nerves.
With the advent of MRI, nerves that compose the brachial plexus can now be directly evaluated. Intrinsic and extrinsic pathology can be evaluated. Exact anatomic components of the brachial plexus, such as the roots, trunks, divisions, and cords, can be identified. MRI has the additional benefit of multiplanar imaging and increased soft tissue contrast. The tissue resolution of MRI is constantly improving with new pulse sequences and coil designs.[1, 6, 7, 8, 9, 10, 11] (See the images below.)
Birth trauma. Sagittal image of the brachial plexus shows an area of increased signal intensity in the C6 neural foramen. This is an area of particular concern in cases of birth trauma, and the finding is consistent with traumatic injury of the nerve root. Birth trauma. Coronal image of the brachial plexus shows an area of increased signal intensity in the right C6 neural foramen. Birth trauma. With radiography and CT scanning, changes in the shape or position of the brachial plexus have been used to assess pathology.[12] With MRI, the nerve can be directly visualized and evaluated for pathology. MRI sequences such as fat-saturated T2-weighted spin-echo, short-tau inversion recovery (STIR), and gadolinium-enhanced T1-weighted spin-echo sequences help in depicting subtle changes in the signal intensity of the nerves or enhancement and aid in refining the differential diagnosis. In addition, maximum intensity projections can make localization and visualization of the pathology most understandable for referring clinicians and surgeons. (See the images below.)
Avulsion in a 17-year-old female adolescent after she was ejected from an automobile in a collision. Oblique cervical myelogram shows extravasation of contrast material from torn right lower nerve-root sheaths. Avulsion in a 17-year-old female adolescent after she was ejected from an automobile in a collision. Axial image obtained with a long repetition time (TR) and a long echo time (TE) (TR/TE, 3800/98 ms) shows extensive injuries to the right paraspinal soft tissues. The 3 images immediately following this one were obtained 3 months after this image was produced. Avulsion in a 17-year-old female adolescent after she was ejected from an automobile in a collision. Coronal image obtained with a long repetition time (TR) and long echo time (TE) (TR/TE, 1800/71 ms) shows circumscribed right paravertebral fluid collections at C6-7 and C7-T1. These represent pseudomeningoceles from torn nerve-root sheaths and avulsed nerve roots. Avulsion in a 17-year-old female adolescent after she was ejected from an automobile in a collision. Sagittal image obtained with a long repetition time (TR) and long echo time (TE) (TR/TE, 1800/112 ms) shows circumscribed right paravertebral fluid collections at C6-7 and C7-T1. These represent pseudomeningoceles from torn nerve-root sheaths and avulsed nerve roots. Avulsion in a 17-year-old female adolescent after she was ejected from an automobile in a collision. Axial image obtained with a long repetition time (TR) and long echo time TE (TR/TE, 4000/100 ms) shows circumscribed right paravertebral fluid collections at C6-7 and C7-T1. These represent pseudomeningoceles from torn nerve root sheaths and avulsed nerve roots. Gadolinium-based contrast agents (gadopentetate dimeglumine [Magnevist], gadobenate dimeglumine [MultiHance], gadodiamide [Omniscan], gadoversetamide [OptiMARK], gadoteridol [ProHance]) have been linked to the development of nephrogenic systemic fibrosis (NSF) or nephrogenic fibrosing dermopathy (NFD). For more information, see the eMedicine topic Nephrogenic Systemic Fibrosis. The disease has occurred in patients with moderate to end-stage renal disease after being given a gadolinium-based contrast agent to enhance MRI or MRA scans.
NSF/NFD is a debilitating and sometimes fatal disease. Characteristics include red or dark patches on the skin; burning, itching, swelling, hardening, and tightening of the skin; yellow spots on the whites of the eyes; joint stiffness with trouble moving or straightening the arms, hands, legs, or feet; pain deep in the hip bones or ribs; and muscle weakness. For more information, see Medscape.
Diagram of the brachial plexus. Injury to the brachial plexus is associated with weakness and paresthesias of the upper extremity on the affected side. Thorough neurologic examination can be performed to localize the injury and to help the radiologist pinpoint the location of pathology.
As the technology and resolution have improved, magnetic resonance imaging (MRI) has become increasingly important in the evaluation of brachial plexus pathology. Correlation of imaging results with electrophysiologic findings increases overall specificity and sensitivity.[3, 4, 5]
According to Nardin et al,[2, 6] electromyelography (EMG) and MRI examinations are complementary. Their study demonstrated that the sensitivity of EMG and MRI were 72% and 60%, respectively. Plain radiography can depict large lesions affecting the brachial plexus. However, radiographs are far less sensitive than other studies. Computed tomography (CT) scanning has increased sensitivity for depicting extrinsic masses that compress the nerves; however, it offers poor soft tissue contrast for direct evaluation of the nerves.
With the advent of MRI, nerves that compose the brachial plexus can now be directly evaluated. Intrinsic and extrinsic pathology can be evaluated. Exact anatomic components of the brachial plexus, such as the roots, trunks, divisions, and cords, can be identified. MRI has the additional benefit of multiplanar imaging and increased soft tissue contrast. The tissue resolution of MRI is constantly improving with new pulse sequences and coil designs.[1, 6, 7, 8, 9, 10, 11] (See the images below.)
Birth trauma. Sagittal image of the brachial plexus shows an area of increased signal intensity in the C6 neural foramen. This is an area of particular concern in cases of birth trauma, and the finding is consistent with traumatic injury of the nerve root. Birth trauma. Coronal image of the brachial plexus shows an area of increased signal intensity in the right C6 neural foramen. Birth trauma. With radiography and CT scanning, changes in the shape or position of the brachial plexus have been used to assess pathology.[12] With MRI, the nerve can be directly visualized and evaluated for pathology. MRI sequences such as fat-saturated T2-weighted spin-echo, short-tau inversion recovery (STIR), and gadolinium-enhanced T1-weighted spin-echo sequences help in depicting subtle changes in the signal intensity of the nerves or enhancement and aid in refining the differential diagnosis. In addition, maximum intensity projections can make localization and visualization of the pathology most understandable for referring clinicians and surgeons. (See the images below.)
Avulsion in a 17-year-old female adolescent after she was ejected from an automobile in a collision. Oblique cervical myelogram shows extravasation of contrast material from torn right lower nerve-root sheaths. Avulsion in a 17-year-old female adolescent after she was ejected from an automobile in a collision. Axial image obtained with a long repetition time (TR) and a long echo time (TE) (TR/TE, 3800/98 ms) shows extensive injuries to the right paraspinal soft tissues. The 3 images immediately following this one were obtained 3 months after this image was produced. Avulsion in a 17-year-old female adolescent after she was ejected from an automobile in a collision. Coronal image obtained with a long repetition time (TR) and long echo time (TE) (TR/TE, 1800/71 ms) shows circumscribed right paravertebral fluid collections at C6-7 and C7-T1. These represent pseudomeningoceles from torn nerve-root sheaths and avulsed nerve roots. Avulsion in a 17-year-old female adolescent after she was ejected from an automobile in a collision. Sagittal image obtained with a long repetition time (TR) and long echo time (TE) (TR/TE, 1800/112 ms) shows circumscribed right paravertebral fluid collections at C6-7 and C7-T1. These represent pseudomeningoceles from torn nerve-root sheaths and avulsed nerve roots. Avulsion in a 17-year-old female adolescent after she was ejected from an automobile in a collision. Axial image obtained with a long repetition time (TR) and long echo time TE (TR/TE, 4000/100 ms) shows circumscribed right paravertebral fluid collections at C6-7 and C7-T1. These represent pseudomeningoceles from torn nerve root sheaths and avulsed nerve roots. Gadolinium-based contrast agents (gadopentetate dimeglumine [Magnevist], gadobenate dimeglumine [MultiHance], gadodiamide [Omniscan], gadoversetamide [OptiMARK], gadoteridol [ProHance]) have been linked to the development of nephrogenic systemic fibrosis (NSF) or nephrogenic fibrosing dermopathy (NFD). For more information, see the eMedicine topic Nephrogenic Systemic Fibrosis. The disease has occurred in patients with moderate to end-stage renal disease after being given a gadolinium-based contrast agent to enhance MRI or MRA scans.
NSF/NFD is a debilitating and sometimes fatal disease. Characteristics include red or dark patches on the skin; burning, itching, swelling, hardening, and tightening of the skin; yellow spots on the whites of the eyes; joint stiffness with trouble moving or straightening the arms, hands, legs, or feet; pain deep in the hip bones or ribs; and muscle weakness. For more information, see Medscape.
Technique and Imaging Parameters
The brachial plexus can be easily identified on MRI by first identifying the anterior scalene muscle. The brachial plexus and subclavian artery (relationship outlined above) are deep to the anterior scalene. Normal components of the brachial plexus have low signal intensity on images obtained with all sequences and are surrounded by fat. The roots are best seen on axial images, whereas the remaining components are well seen on coronal and sagittal images.[7, 13, 14] (See the images below.)Non-Hodgkin lymphoma in a 58-year-old man. Coronal spoiled gradient-echo image (repetition time [TR]/echo time [TE], 175/4.2 ms; flip angle, 90°) shows lymphomatous lesions in the right brachial plexus and in the marrow of the humerus. Non-Hodgkin lymphoma. Axial image obtained with a short repetition time (TR) and short echo time (TE) (TR/TE, 550/9 ms) shows lymphomatous lesions in the right brachial plexus and in the marrow of the humerus. Non-Hodgkin lymphoma in a 58-year-old man. Sagittal images obtained with a short repetition time (TR) and a short echo time (TE) (TR/TE, 650/9 ms) show lymphomatous lesions in the right brachial plexus and in the marrow of the humerus.
Radiofrequency coil
A surface coil provides resolution higher than that of a body coil, but it increases artifact due to respiratory motion. A combination of each may be used in sequences for the brachial plexus. As such, the surface coil is used for the spinal cord and exiting spinal nerve roots, whereas the body coil is used to image the plexus lateral to the interscalene triangle.Field of view
Examination of the brachial plexus begins with the roots and trucks in the proximal aspects within the supraclavicular region and continues to the origin of the terminal branches at the lateral margin of the pectoralis minor muscle in the infraclavicular region.The field of view (FOV) is 17-22 cm for the direct coronal orientation and 14-17 cm for sagittal or oblique sagittal orientations.
Matrix
A matrix of 512 X 256 or 512 X 512 is used.Section thickness
The recommended section thickness is 4 mm with an intersection gap of 0-0.5 mm for direct coronal imaging and 4 mm with an intersection gap of 1-2 mm for sagittal or oblique sagittal imaging. If axial images are obtained, 4-mm thickness with a 1- to 1.5-mm intersection gap may be performed.Orientation
Images should be obtained in 2 planes. Direct coronal plane imaging is preferred over oblique coronal imaging because the brachial plexus has a shallow obliquity relative to the true coronal plane and because it can be imaged on 1 or 2 coronal sections.Cross-sectional imaging of the nerve components of the plexus may be performed by using either the true sagittal or the oblique sagittal plane on the side of interest. True sagittal imaging allows for comparison with the standard cross-sectional anatomy, which some find helpful in the recognition of appropriate anatomic landmarks. However, oblique sagittal imaging represents the true cross-section of the plexus more accurately than true sagittal imaging and thus allows for increased sensitivity to pathology, including changes in caliber, alteration in signal intensity, or presence of a fascicular pattern to the nerve components.
Some institutions include a contrast-enhanced T1-weighted axial sequence as part of their routine evaluation of the brachial plexus.
Avulsion in a 15-year-old male adolescent with palsy of the right upper extremity due to trauma related to a snowmobile accident. Coronal image obtain with a short repetition time (TR) and a short echo time (TE) (TR/TE, 600/8 ms) shows a poorly defined zone of low signal intensity in the region of the right brachial plexus. Avulsion in a 15-year-old male adolescent with palsy of the right upper extremity due to trauma related to a snowmobile accident. Coronal image obtained with a long repetition time (TR) and a long echo time (TE) (TR/TE, 7058/98 ms) shows a traumatic fluid collection containing several retracted nerves of the right brachial plexus. Avulsion in a 15-year-old male adolescent with palsy of the right upper extremity due to trauma related to a snowmobile accident. Sagittal image obtained a long repetition time (TR) and long echo time (TE) (TR/TE, 10,588/98 ms) shows a traumatic fluid collection containing several retracted nerves of the right brachial plexus. Clavicular fracture in a 57-year-old man with a traumatic comminuted fracture of the left clavicle. Coronal image obtained with a short repetition time (TR) and a short echo time (TE) (TR/TE, 600/9 ms) shows the fracture mildly impressing on the left brachial plexus. Clavicular fracture in a 57-year-old man with a traumatic comminuted fracture of the left clavicle. Sagittal image obtained with a long repetition time (TR) and long echo time (TE) (TR/TE, 2000/83 ms) shows the fracture mildly impressing on the left brachial plexus. Lipoma in a 38-year-old woman with a lipoma above the left brachial plexus. Coronal image obtained with a short repetition time (TR) and short echo time (TE) (TR/TE, 600/9 ms) shows a lipoma mildly impressing on the left brachial plexus. Lipoma in a 38-year-old woman with a lipoma above the left brachial plexus. Sagittal image obtained with a short repetition time (TR) and short echo time (TE) (TR/TE, 600/9 ms) shows a lipoma mildly impressing on the left brachial plexus. Neurofibromatosis type 1 in a 26-year-old woman. Coronal images obtained with a short repetition time (TR) and a short echo time (TE) (TR/TE 650/16 ms) show several circumscribed neurofibromas along the right brachial plexus. Neurofibromatosis type 1 in a 26-year-old woman. Coronal fat-suppressed images obtained with a long repetition time (TR) and a long echo time (TE) (TR/TE, 4000/96 ms) show several circumscribed neurofibromas along the right brachial plexus. The neurofibromas have high signal intensity. Postirradiation changes in an 84-year-old woman with a history of breast cancer. Coronal image obtained with a short repetition time (TR) and short echo time (TE) (TR/TE, 400/9 ms) shows irregular thickening of the left brachial plexus. Postirradiation changes in an 84-year-old with a history of breast cancer. Coronal contrast-enhanced fat-suppressed image obtained with a short repetition time (TR) and a short echo time (TE) (TR/TE, 650/9 ms) shows poorly defined zones of contrast enhancement in the region of the brachial plexus. These zones representing radiation-induced changes to infiltrating tumor.
Pulse sequences
T1- and T2-weighted images are obtained with identical parameters in terms of FOV, matrix, section thickness, and imaging plane.STIR or frequency-selective fat-saturation methods may be used for T2-weighted MRI to increase the conspicuity of abnormal signal intensity from the signal intensity of adjacent fat. Each has its advantages and disadvantages. STIR has been described as being more reliable than the other method because of its uniform and consistent fat suppression and excellent T2-like contrast when long repetition times are used.
The STIR method has several disadvantages. For example, it has a relatively low signal-to-noise ratio, it offers relatively low tissue contrast, and it is more susceptible to flow artifacts than other methods.
In contrast, frequency-selective fat-saturation methods have the advantage of an improved signal-to-noise ratio, T1-weighted imaging, and reduced flow-related artifacts. The major disadvantage of this type of fat suppression is the nonuniformity of fat suppression with the FOV primarily from inhomogeneity of B0. This variability in fat suppression is exacerbated by the nonuniformity in B1.
When radiation injury, neoplasm, infection, or inflammatory etiologies are present or suspected, contrast-enhanced fat-suppressed T1-weighted MRI should be performed. The suggested protocol is summarized in in the image below.
Summary of suggested MRI techniques. FOV = field of view; T1WI = T1-weighted imaging; STIR = short-tau inversion recovery; FS = fast spin echo.